3GPP TSG SA WG3 (Security) Meeting #92
S3-182387
20-24 August 2018, Dalian (CN)


Source:
Ericsson
Title:
Names, terminology and restructuring for the N32 application layer solution
Document for:
Approval
Agenda Item:
7.1.13.1
1
Decision/action requested

Approve proposals.
Approve change request to draft-CR S3-181937.
2
References

[1]
draft-CR S3-181937, “Application layer security on the N32 interface” 
[2]
C4-185350 “Skeleton TS on PLMN interconnection - stage 3”

3
Rationale

3.1 Placement of security capability negotiation
TS 33.501 has clause 13.5 “Security capability negotiation between SEPPs” which specifies how SEPPs negotiate which security mechanism is to use over N32 (e.g. whether to use the JOSE-based Application Layer solution). Clause 13.2.2 “Initial handshake between SEPPs” in draft-CR S3-181937 has very similar text and there is also an EN in clause 13.2.2 which reads: “Section 13.5 currently specifies the procedure for security capability negotiation between SEPPs. It needs to be merged under the initial handshake procedure”. 
This contribution proposes to resolve the EN in the following way. 
Proposal 1:

- Clause 13.5 is moved under clause 13.2 as a new clause 13.2.x before the clause 13.2.2 “Initial handshake between SEPPs” as it procedurally fits naturally there. 
Note: Due to this proposed move of existing text in TS 33.501, clause 13.5 should be voided when the draft-CR S3-181937 becomes a real CR.
- Overlapping parts between clause 13.2.2.2 “Procedure” and moved clause 13.2.x “Security capability negotiation between SEPPs” are removed from 13.2.2.2.  This is because there are actually two procedures: a procedure for negotiating which security mechanism to use over N32 (e.g. whether to use the JOSE-based Application Layer solution) and a procedure for negotiating the security parameters for the selected security mechanism (e.g. cipher suites for the Application Layer solution), and these procedures should be specified separately.
- It is further clarified in the security capability negotiation that the use of TLS can be negotiated in the case that there are no IPX providers present in N32. This is according to the existing requirement in clause 13.1. 
3.2
Name for the N32 application layer solution
So far, SA3 has specified two different security solutions for the N32 interface:

· The JOSE-based application layer solution described in S3-181937 [1], which is used if IPX provider modifications are expected on the N32 interface, and
· TLS, if no IPX provider is present between the SEPPs, whose use is defined in clause 13.1.
The JOSE-based application layer solution is actually a new protocol that is currently developed by SA3 and CT4. We propose that SA3 finds a proper name for this protocol. The reasoning is the following:

· It would make clear that the JOSE-based application layer solution is only one of several protocols for N32.

· It would be easier to refer to the newly developed protocol in other contexts than SA3 and CT4.
· It would make clear that SA3 and CT4 actually designed a new protocol for this specific purpose.

· “JOSE-based application layer solution” does not really describe the purpose of the protocol, neither the “application layer” nor the “JOSE” is a very particular property of the new protocol compared to other protocols.
For the sake of a concrete proposal, we propose the name SIMPL (Security for Interconnect with Mediation services ProtocoL).

Proposal 2a: SA3 finds a name for what is currently called the JOSE-based application later solution.

Proposal 2b: The new name is SIMPL (Security for Interconnect with Mediation services ProtocoL).
In addition, current name of clause 13.2 is “Application layer security on the N32 interface” which is a bit misleading since the clause is not only about application layer security but about N32 interface security in general where mediation services may play an important role. 
Proposal 2c: The title of clause 13.2 is proposed to be changed to “Security of the N32 interface with mediation services”.
3.3

N32 protocol names
CT4 has introduced the names N32-c and N32-f for the N32 initial handshake (N32-c) and the N32 forwarding (N32-f). So far, N32-c contains both the negotiation of which protocol to use (the text currently in clause 13.5 of 33.501) and the specific negotiation of parameters for setting up a context for the JOSE-based application layer solution. However, in future releases the initial negotiation could both result in new versions of the JOSE-based application layer solution (with new versions of the following parameter negotiation) and new N32-protocols. To resolve this problem, we propose the following:

Proposal 3a: N32-c contains both negotiation of which protocol and version to use, and the parameter negotiation for the actual protocol.
Proposal 3b: The part of N32-c that contains the negotiation of parameters for a certain protocol <P> is called <P>-c. For example, if the name in Proposal 2b is chosen, this would be called SIMPL-c.
Proposal 3c: The JOSE-based application layer solution gets version numbers. For example, the release-15 version could be calledSIMPL-v15, if the name in Proposal 2b is chosen.

Proposal 3d: N32-f denotes all message forwarding parts of all possible protocols that perform data forwarding on N32.

Proposal 3e: The part of N32-f that contains the message forwarding for a certain protocol <P> is called <P>-f. For example, if the name in Proposal 2b is chosen, this would be called SIMPL-f.

The above proposals are implemented in the pCR below.

3.4
Placement of N32 security solution in TS 33.501
Currently, the JOSE-based application layer solution and the N32-c initial handshake are described in clause 13.2 of TS 33.501. However, clause 13 has the title “Service based interfaces”, and N32 is not a service based interface. Therefore, it would be clearer if clause 13.2 was taken out of clause 13 and would be an independent level 1 clause in the TS. 
So we propose the following:

Proposal 4a: The N32 interface is described in a separate level 1 clause in TS 33.501.

For the sake of clarity of the present contribution, this change has not been implemented in the pCR below. If agreed, this move could be done as the last action to clause 13.2 after all technical content has been agreed in this meeting.
4
Detailed proposal: change request to draft-CR S3-181937
The following pCR implements the proposed changes in the draft-CR S3-181937.
**** Begin of  changes ****
13.2
Security of the N32 interface with mediation services 
Editor’s Note: It is FFS how each JSON IE in the message is identified during parsing, and how each of these IEs need to be protected. 
 It is FFS how binary data in the message payload is identified during parsing, and how it is protected.
Details of how sensitive contents in Request-URI are identified and protected is FFS.
Details of how sensitive information in HTTP Headers is identified and protected is FFS.
Details of how the receiving SEPP verifies the message is for FFS. 
It is FFS how the receiving SEPP restores the original message from the received protected message.
Negotiation and agreement on the cipher suites between the two SEPPs is FFS.
Renegotiation of cipher suites between the two SEPPs is FFS
Key management aspects that includes key distribution and key agreement aspects are FFS.

Editor's Note: Solutions in this sub-clause may apply, in particular, when there may be intermediaries modifying messages, e.g. in roaming situations.  

Editor's Note: This sub-clause is to include solutions satisfying the requirements on e2e security in clause 5.6. It is ffs whether the work performed by GSMA FASG DESS on e2e security for selected DIAMETER AVPs can be somehow utilized here. It is to also take into account solutions 10.1 and 10.2 in clause 5.10.4 of TR 33.899. When the solution(s) involve a Public Key Infrastructure then details of the use of the PKI are to be provided, e.g. by reference to TS 33.310. 
13.2.1
General

The internetwork interconnect allows secure communication between service-consuming and a service-providing NFs. Security is enabled by the Security Edge Protection Proxies of both networks, called cSEPP and pSEPP respectively. The SEPPs enforce network policies regarding application layer security. They also ensure integrity and confidentiality protection for those elements on the application layer that are to be protected.

There is the assumption that there are interconnect providers between cSEPP and pSEPP. The interconnect provider the cSEPP's PLMN has a business relationship with is called cIPX, while the interconnect provider the pSEPP's PLMN has a business relationship with is called pIPX. There could be further interconnect providers in between cIPX and pIPX, but they are assumed to be transparent and simply forward the communication.

pIPX and cIPX can offer services that require modifications of the messages transported over the interconnect interface. These modifications are appended to the message and reflect the desired changes. 

The N32 interface consists of 

· N32-c, for management of the N32 interface, and

· N32-f, for forwarding of messages between the SEPPs.
13.2.X
N32-c security capability negotiation between SEPPs

T
he security capability negotiation allows the SEPPs to negotiate which security mechanism to use for protecting NF service related signalling over N32. There shall be an agreed security mechanism between a pair of SEPPs before conveying NF service related signalling over N32.

When a SEPP notices that it does not have an agreed security mechanism for N32 protection with a peer SEPP or if the security capabilities of the SEPP have been updated, the SEPP shall perform security capability negotiation with the peer SEPP in order to determine, which security mechanism to use for protecting NF service related signalling over N32.  

A mutually authenticated TLS connection as defined in clause 13.1 shall be used for protecting security capability negotiation over N32. C
ertificate based authentication shall follow the profiles given in 3GPP TS 33.310 [17], clauses 6.1.3a and 6.1.4a. The TLS connection shall provide integrity, confidentiality and replay protection.


[image: image1.emf]SEPP

SEPP

1. Registration Request

(Supported security mechanisms)

3. Registration Response

(Selected security mechanism)

2. Select security 

mechanism


Figure 13.5-1 Security capability negotiation
1.
The SEPP which initiated the TLS connection sends a Registration Request message to the responding SEPP including the initiating SEPP’s supported security mechanisms for protecting the NF service related signalling over N32 (see table 9.3.1.X-1). The security mechanisms are ordered in initiating SEPP’s priority order.  

2.
The responding SEPP compares the received security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both initiating SEPP and responding SEPP. 

3.
The responding SEPP sends a Registration Response message to initiating SEPP including selected security mechanism for protecting the NF service related signalling over N32. 

Editor’s Note: The exact message names are FFS.

Table 13.5-1: NF service related signalling traffic protection mechanisms over N32
	N32 protection mechanism
	Description

	Mechanism 1
	SIMPL-v15

	Mechanism 2
	TLS

	Mechanism n
	Reserved


I
f the selected security mechanism is SIMPL-v15 the SEPPs shall behave as specified in clause X.3
If the selected security mechanism is TLS (i.e. there are no IPX entities between the SEPPs) the SEPPs shall forward the NF service related signalling over N32 using the existing TLS connection as specified in clause 13.1. 
If the selected security mechanism is based on a mechanism other than the ones specified in Table 13.5-1, the two SEPPs shall terminate the TLS connection.
13.2.2
SIMPL (Security for Interconnect with Mediation services ProtocoL)

13.2.2.1
SIMPL-c
13.2.2.1.1
General

When the SEPPs have mutually authenticated each other and when the negotiated security mechanism to use over N32 is SIMPL, the SEPPs use the SIMPL protocol to negotiate the associated SIMPL specific security configuration parameters (this is called SIMPL-c and specified in the present clause) and to transfer NF service related signalling over N32 (this is called SIMPL-f and specified in clause). 





The SIMPL-c specifies two functionalities:

-
Key agreement: The SEPPs independently export keying material associated with the established TLS session between them and use it as the pre-shared key for generating the shared session key required. This is based on RFC 5705 [xx] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [yy] is used.

-
Parameter negotiation: The SEPPs exchange security related configuration parameters that are needed by the SEPPs to protect HTTP messages exchanged between the two Network Functions (NF) in their respective networks.
The following security related configuration parameters are exchanged between the two SEPPs:

a. Modification protection policy – Modification protection policy, as specified in clause 13.2.2.2.4, indicates which IEs can be modified by an IPX provider of the sending SEPP.

b. Cipher suites for confidentiality and integrity protection when Application layer security is used to protect HTTP messages between them.

Editor’s Note: Whether supported confidentiality protection and integrity protection methods need to be negotiated is FFS.

13.2.2.1.2
SIMPL-c Procedure









1. The two SEPPs perform a cipher suite negotiation to agree on a cipher suite to use for protecting NF service related signalling over N32.

1a. The SEPP which initiated the TLS connection sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s supported cipher suites. The cipher suites are ordered in initiating SEPP’s priority order.

1b. The responding SEPP compares the received cipher suites to its own supported cipher suites and selects, based on its local policy, a suite, which is supported by both initiating SEPP and responding SEPP.
1c. The responding SEPP sends a Parameter Exchange Response message to the initiating SEPP including the selected cipher suite for protecting the NF service related signalling over N32.

2. The two SEPPs may perform negotiation of protection policies to use for protecting NF service related signalling over N32:

2a. The SEPP, which initiated the TLS connection, sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s protection policies listed in clause 13.2.2.2. 

2b. The responding SEPP shall store the Modification protection policy information if sent by the initiating SEPP. 
2c. The responding SEPP sends a Parameter Negotiation Response message to the initiating SEPP with the selected values for the parameters sent in step 2.

2d. The initiating SEPP shall store the protection policy information if sent by the responding SEPP, 

3. The two SEPPs export keying material from the TLS session established between them and use it as the pre-shared key for generating the session key required for protecting HTTP messages.

4. The two SEPPs terminate the TLS session.

Editor’s Note: The exact message names are FFS.


13.2.2.1.3
SIMPL-c parameter negotiation
13.2.2.1.4
Modification policy exchange
13.2.2.2
Protection Policies for SIMPL
13.2.2.2.1
Overview of Protection Policies
The protection policy determines which part of a certain message shall be integrity protected, which part of a certain message shall be confidentiality protected, and which part of a certain message shall be modifiable by IPX providers. For application layer protection of messages on the N32 interface, the SEPP shall apply message protection policies.

There are two protection policies, namely: 

-
Data-type encryption policy that specifies which data types need to be confidentiality protected; 

-
A modification policy that specifies which IEs are modifiable by intermediaries

In addition, there is a mapping between the data-types in the data-type encryption policy and the IEs in NF API descriptions which is given in a NF-API data-type placement mapping.

13.2.2.2.2
Data-type encryption policy

The SEPP shall contain an operator controlled protection policy that specifies which types of data shall be encrypted. The data-types defined at this moment are the following:

-
Data of the type 'SUPI'

-
Data of the type 'location data'

-
Data of the type 'key material'

-
Data of the type 'authorization token'

-
Data of the type 'other data requiring encryption'

Editor's Note: The details of the list of data-types are ffs.

This policy shall be on a per roaming partner basis.

The policy shall contain an identifier that identifies the policy.

13.2.2.2.3
NF API data-type placement mapping

Each NF API data-type placement mapping shall contain the following:

-
Which IEs contain data of the type 'IMSI' or type 'NAI'

-
Which IEs contain data of the type 'location data'

-
Which IEs contain data of the type 'key material'

-
Which IEs contain data of the type 'other data requiring encryption'

-
Which IEs contain data of the type 'authorization token'
Where the location of the IEs refers to the location of the IEs after the SEPP has rewritten the message for transmission over N32.

An NF API data-type placement mapping shall furthermore contain data that identifies the NF API, namely
-
The name of the NF

-
The version

-
An identifier
NOTE: 
Larger networks can contain multiple NFs with the same API, e.g. three AMFs. The NF API policy applies to all NFs with the same API.

The NF API data-type placement mapping resides in the SEPP.

13.2.2.2.4
Modification policy

The modification policy shall specify which IEs can be modified by an IPX provider of the sending SEPP. The IEs refer to the IEs after the SEPP has rewritten the policy.

This policy shall be specific per roaming partner and per IPX provider that is used for the specific roaming partner.

This policy resides at the SEPP.

13.2.2.2.5
Provisioning of the policies in the SEPP

The SEPP shall contain an interface that the operator can use to manually configure the protection policies in the SEPP.

The SEPP shall be able to store and process the following policies for outgoing messages:

-
A generic data-type encryption policy;

-
Roaming partner specific encryption policies that will take precedence over a generic data-type encryption policy if present;

-
One NF API Data-type placement mapping;

-
Multiple modification policies, to handle modifications that are specific per IPX provider and modification policies that are specific per IPX provider and roaming partner.

The SEPP shall also be able to store and process the following policies for incoming messages:

-
Roaming partner specific encryption policies;

Editor's Note: the need for roaming partner specific encryption policies for incoming messages is ffs

-
A modification policies per roaming partner that specifies which fields can be modified by which IPX providers.
13.2.2.3
SIMPL-f protocol
13.2.2.3.1
General


Complete messages are integrity protected between cSEPP and pSEPP. cIPX and pIPX may modify messages according to the modification policy by applying signed 'patches' to the integrity protected messages.  These form an auditable chain of modification that are applied to the messages at the receiving end after verifying that the patches conform to the modification policy. Modifications are introduced by the cIPX and pIPX as signed 'patches' to the integrity protected messages, forming an auditable chain of modifications that are applied to the messages at the receiving end after verifying that the patches conform to the modification policy.

Encryption of individual JSON objects according to the data-type encryption policy takes place end to end between cSEPP and pSEPP.

The sending SEPP takes the HTTP message and encapsulates header and body into JSON elements. Reformatting only takes place for the headers, while the only changes to the body of the message are to those JSON objects that need to be encrypted.
13.2.2.3.2
Message reformatting in SEPP

Editor's Note: Message reformatting in SEPP may need to be revised following input from CT4.
13.2.2.3.2.1
SIMPL-f Message payload structure

13.2.2.3.2.1.1
Overall message structure
A HTTP message received from an internal Network Function is reformatted into a JSON object called N32 Message payload, consisting of the following parts:

a. The authenticatedBlock containing complete set of information that is integrity protected. It contains the following:


-
clearTextBlock – contains the complete original HTTP message.

-
encryptedBlock - containing all the attribute values requiring encryption.

-
metadata – contains SEPP generated information such as Request-Id, nexthop Id etc.
b. The modificationsBlock (modifiable integrity-protected) containing attribute values that require modifiable integrity protection
The N32 message payload is represented using the JSON syntax as follows and is transmitted on the N32 interface in the payload body of a SEPP to SEPP HTTP message.

[image: image2.emf]{

“authenticatedBlock” : {

“clearTextBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},    

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}  

},

“HTTP_Headers” : {

“Hdr1”: {},

“Hdr2”:{“encBlockIdx”: 0}

},

“Payload” : {

“IE1” :{},

“IE2” :{“encBlockIdx”: 1},

“IE3” :{},

“IE4” :{}

}

},  

“encryptedBlock” : [

Hdr2,

IE2

],

“metaData” : {

“Request_Id” : {},

“NextHop_Id” : {}

}

}

“modificationsBlock” : {

“Mod_chain”:[]

}

}


Figure 13.2.2.3.2.1-1 JSON representation of a reformatted HTTP message (i.e. N32 message payload)

Editor's Note: It is FFS whether the reference from the cleartextblock JSON object to the encryptedBlock is secure, or whether a different way of linking these is required.
13.2.2.3.2.1.2
authenticatedBlock
The authenticatedBlock contains the complete original HTTP message (including HTTP Request/Response line, HTTP headers and HTTP Payload) which is re-formatted into this block. This block represents information that is integrity protected. The block shall be represented as a single JSON structure consisting of the following JSON objects: 
1) clearTextBlock – This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a.1)
Request_Line - containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request OR

1.a.2)
Response_Line - containing an attribute for each of the HTTP version, the status code and the status message.
1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as key and the header value as value. The path shall be put into an array, with one element per part of the path (i.e. per "directory") to enable individual encryption of the SUPI in the request line.

1.c) Payload – the JSON object that includes the payload body of the request. Each attribute or IE in the payload shall form a single entry in the Payload JSON object. 

NOTE: The order and contents of the original message are unchanged as they are copied into the Payload JSON object by SEPP.

2) encryptedBlock – cf clause 13.2.2.3.2.1.3. If there is any attribute value that requires encryption, it shall be moved into the encryptedBlock JSON object, and the original value in the clearTextBlock is replaced by the index in the form {"encBlockIdx": <num>} where "num" is the index of the corresponding entry in the encryptedBlock array. 
3) metaData – contains additional information for replay protection (Request_Id), Next Hop Identity (if available) etc.

13.2.2.3.2.1.3
encryptedBlock

The encryptedBlock is a JSON array that contains all the attribute values that require encryption. Attribute values can come from any part of the original HTTP message - request/response line, headers and payloads. 

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value.

There is an association that connects each attribute in the encryptedBlock with the original attribute in the original HTTP message (see clause 13.2.2.3.2.1.3). This is needed to reassemble the original message at the receiving SEPP. The association is the position of the attribute in this block.

13.2.2.3.2.1.4
modificationsBlock

The modificationsBlock contains modifications that require integrity protection. A JSON array is created in the modificationsBlock to represent modifications. The first entry in the array is created by the cSEPP. Subsequent entries in the array are for modifications by intermediaries.

Each entry in the array contains a JSON object representing the desired modifications by the intermediaries. The JSON object contains the following:

a)
Operations - This is a JSON element with the syntax and semantic to capture the delta based on RFC 6902 (JSON Patch). If no patch is required, the operations element is empty.
b)
Identity -  identity of the entity performing the modification.
c)
Next Hop Identity - which when present shall be the identity of the next hop (intermediary).

The first entry in the array, called originalObject, represents the original message in the clearTextBlock (i.e., no original is stored in the array as first entry and operations JSON element is empty). Subsequent entries, called patchRequests, contain the forward delta that only records the modifications made by the intermediary, in the Operations field.

Each entry is signed by the modifying entity using JWS[x].
13.2.2.3.2.2
SIMPL-f Procedure



The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.


[image: image3.emf]cSEPP pSEPP pIPX

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and 

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX 

modifications to miPBlock 

in the message

5. Protected HTTP 

Request

w/IPX modification

6. Append pIPX 

modifications to miPBlock 

in the message

7. Protected HTTP 

Request

w/IPX modifications

8. Verify integrity of ipBlock.

Decrypt encBlock. 

Verify IPX updates in 

mipBlock and apply them.

Reassemble the HTTP 

Request message.

9. Modified HTTP 

Request

10. HTTP Response

11. Message rewriting and 

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX 

modifications to miPBlock 

in the message

14. Protected HTTP 

Response

w/IPX modification

15. Append cIPX 

modifications to miPBlock 

in the message

16. Protected HTTP 

Response

w/IPX modifications

18. Modified  HTTP 

Response

17. Verify message.

Reassemble the HTTP response.


Figure 13.2.2.3.2.2-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin rewriting the HTTP Request message.


a. Generating blocks for integrity protected data and encrypted data, and protecting them:



The cSEPP encapsulates the HTTP request into a clearTextBlock containing the following child JSON objects: 

-
Request_Line

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.


For each attribute that requires e2e encryption, the attribute is copied into a encryptedBlock JSON object and 
the attribute’s value in the clearTextBlock is replaced by the index of attribute value in the in the encryptedBlock.

A metadata block is created that contains a new Request Id generated by SEPP for this request and next hop identity (when available).


The clearTextBlock, encryptedBlock and metadata is encapsulated into the authenticatedBlock, which represents the complete set of information that needs to be integrity protected.

The cSEPP protects authenticatedBlock as per clause 13.2.2.3.2.1.2. This results in a single JWE or JWS object representing protected ipBlock.

b. Generating modifiable integrity block for attributes that may be modified by the intermediaries

If there are attribute(s) that require modifiable integrity protection, an array (Mod_chain) is created in a top level modificationsBlock JSON object to store modifications by the intermediaries. 


The cSEPP creates a new originalObject JSON object. Since there is nothing modified by the cSEPP, the 
operations field is empty. The cSEPP shall include its own identity in the originalObject JSON object.


Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the originalObject. This authorizes the first intermediary to perform modifications.


Editor’s Note: Only authorized intermediaries are allowed to perform modifications. Authorization mechanism is FFS


The cSEPP shall integrity protect the complete originalObject using JWS and insert it as the first entry of the Mod_chain array.

c. Additional binary payloads in multipart messages from NF are represented as separate root-level binaryPayload object

d. Generating payload for the SEPP to SEPP HTTP message


The JWE/JWS object representing protected authenticatedBlock (part a), miodificationsBlock array containing JWS protected originalObject (part b), and binaryPayload (part c) are included as payload in a new HTTP message.
3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary (visited network's IPX provider).

4.
The first intermediary (e.g. visited network's IPX provider) creates a new patchRequest JSON object. The operations JSON element contains its modifications as per RFC 6902[y]. The intermediary includes its own identity in the Identity field of the patchRequest element.

The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array of the modificationsBlock.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary determines further modifications required are captured in a new patchRequest object. Further processing is like in step 4. The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It checks the integrity of the authenticatedBlock. 
-
If successfully verified, the pEPP decrypts the encryptedBlock. 
-

The pSEPP updates the clearTextBlock with the values from the decrypted encBlock by replacing the references to the encryptedBlock, which are stored in the clearTextBlock, by the referenced decrypted values from the encryptedBlock.
-
It then verifies IPX provider updates of the attributes in the modificationsBlock. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextBlock in order.
The pSEPP then re-assembles the full HTTP Request or HTTP Response from the contents of the clearTextBlock.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

13.2.2.3.3
Message protection using JOSE

Editor’s Note: The block names (encryptedBlock, clearTextBlock, patchRequest, modificationsBlock) used to refer to different parts of the reformatted HTTP message must be aligned with CT4 definitions.
13.2.2.3.3.1
Protecting a reformatted HTTP message with JSON Web Encryption (JWE)

Protection of reformatted HTTP messages between SEPPs shall use JSON Web Encryption (JWE) as specified in IETF RFC 7516 [xx]. All encryption methods supported by JWE are AEAD methods that encrypt and integrity protect in one single operation, and additionally can integrity protect additional data.

The encryptedBlock and clearTextBlock shall be input to JWE as plaintext and JWE Additional Authenticated Data (AAD) respectively. The JWE AEAD algorithm generates JWE encrypted text (ciphertext) and a JWE Authentication Tag (Message Authentication Code). The ciphertext is the output from symmetrically encrypting the plaintext, while the authentication tag is a value that verifies the integrity of both the generated ciphertext and the Additional Authenticated Data.

If the clearTextBlock is not present in the rewritten HTTP message, the JWE plaintext shall be set to the string <TBD>. The JWE AEAD algorithm will generate ciphertext and an authentication tag, but the ciphertext will not contain meaningful information.

The Flattened JWE JSON Serialization syntax shall be used to represent JWE as a JSON object.

The session key shared between the two SEPPs, as specified in clause 13.2.2.1.3, shall be used as the Content Encryption Key (CEK) value to the algorithm indicated in the Encryption algorithm ("enc") parameter in the JOSE header. The algorithm ("alg") parameter in the JOSE header denoting the key exchange method shall be set to "dir", i.e. "Direct use of a shared symmetric key as the CEK". 

Editor's Note: how session key is derived from the exported key is FFS.

The 3GPP profile for supported cipher suites in the "enc" parameter is described in <TBD>. 

If AES GCM is used for AEAD the security considerations in 8.4 of [xx] shall be taken into account.  In particular, the same key shall not be used more than 232 times and an IV value shall not be used more than once with the same key.

13.2.2.3.3.2
Protecting modified attributes in the reformatted HTTP message with JSON Web Signature (JWS)
Protection of IPX provider modified attributes shall use JSON Web Signature (JWS) as specified in IETF RFC 7515 [45]. The mechanism described in this clause uses signatures, i.e. asymmetric methods, with private/public key pairs.

When an IPX node modifies one or more attributes of the original HTTP message and creates a patchRequest to record its modifications, it shall use JWS to integrity protect the patchRequest and append the resulting JWS in the modificationsBlock of the N32 Message structure. 

The private key of the IPX provider, as specified in clause <TBD> shall be used as input to JWS for generating the signature representing the contents of the patchRequest.
The "alg" parameter in the JOSE header indicates the chosen signature algorithm. The 3GPP profile for supported algorithms is described in 13.2.2.3.5.
13.2.2.3.4
Message modifications in IPX

Editor's Note: Message modifications in IPX may need to be revised following input from CT4.
Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.

The first intermediary shall parse the encapsulated request (i.e. the cleartext block) and determine which changes are required. The first intermediary creates a JSON object to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [xx] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is empty.
The first intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards the combined message to the second intermediary.

The first intermediary modifier metadata consists of the first intermediary's identity, and a JWS signature over the combined message, including the appended JSON object.

The second intermediary parses the encapsulated request, applies the modifications described in the JSON patch appended by the first intermediary and determines further modifications required for obtaining the desired request. These modifications are recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. The second intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards it to the receiving SEPP.

The second intermediary metadata consists of the second intermediary's identity, and a JWS signature over the complete message, including the appended JSON object.

The receiving SEPP shall check the integrity and authenticity of the encapsulated request (i.e. the cleartext block) and the appended modifications by verifying the MAC of the SEPP to SEPP message (i.e. authenticated data block) and the signatures of the intermediaries. The receiving SEPP also checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP shall decrypt and decapsulate the encapsulated request, apply the patches in the JSON patches in order, perform plausibility checks, and create a new HTTP request according to the "patched" encapsulatedRequest.

13.2.2.3.5
JOSE profile

Editor's Note: More suitable place to the JOSE profile could be TS 33.310 or an annex.
13.2.2.3.5.1
JWE profile

SEPPs shall support JWE as defined in RFC 7516 [xx] with the following algorithms.

"enc" parameter A128GCM (AES GCM with a 128-bit key) shall be supported.  "enc" parameter A256GCM (AES GCM using 256-bit key) should be supported.

"alg" parameter "dir" (Direct use of a shared symmetric key as the CEK) shall be supported.

13.2.2.3.5.2
JWS profile

SEPPs shall support JWS as defined in RFC 7515 [45] with the following algorithms.  If a cIPX or pIPX performs modifications then it shall also support JWS.

"alg" parameter ES256 (ECDSA using P-256 and SHA-256) shall be supported. ES256 shall be used by cIPX and pIPX to sign modifications.

**** Next changes ****
13.5
Void 











	
	

	
	

	
	




�Text moved from 13.5, changes compared to 13.5 marked yellow


�Moved from 13.2.2.1.1.


�Moved and applied from 13.2.2.1.2.


�Superfulous with 13.2.X.


�Superfluous compared to13.2.X.


�Superfluous with 13.2.X.


�This selection is moved to 13.2.x in yellow text.


�This is specified in 13.5 which is proposed to be moved to 13.2.x in this contribution.


�Clause 13.5 is part of TS 33.501 v15.1.0 already. Therefore, it can only be moved via a real CR (see discussion in 3.1 of this contribution). It is proposed that if the current pCR is agreed, then voiding of clause 13.5 is added to the updated S3-181937 when it becomes a real CR in this meeting.





_1587808798.vsd
pSEPP


pIPX


cSEPP


cIPX


cNF


pNF


1. HTTP Request


2. Message rewriting and protection using JOSE


3. Protected HTTP
Request


4. Append cIPX modifications to miPBlock in the message


5. Protected HTTP Request
w/IPX modification


6. Append pIPX modifications to miPBlock in the message


7. Protected HTTP Request
w/IPX modifications






8. Verify integrity of ipBlock.
Decrypt encBlock. 
Verify IPX updates in mipBlock and apply them.
Reassemble the HTTP Request message.






9. Modified HTTP 
Request


10. HTTP Response


11. Message rewriting and protection using JOSE


12. Protected HTTP
Response


13. Append pIPX modifications to miPBlock in the message


14. Protected HTTP Response
w/IPX modification


15. Append cIPX modifications to miPBlock in the message


16. Protected HTTP Response
w/IPX modifications


18. Modified  HTTP Response






17. Verify message.
Reassemble the HTTP response.







_1587819440.vsd
{
   “authenticatedBlock” : {
      “clearTextBlock” : {
          “Request_Line” : {
   	    “Method” : {},
   	    “Scheme” : {},    
	    “Authority” : (},
	    “Path” : {},
             “Query&Fragment” : {},
	    “Protocol version” : {}  
          },
          “HTTP_Headers” : {
	    “Hdr1”: {},
	    “Hdr2”:{“encBlockIdx”: 0} 
          },
          “Payload” : {
	    “IE1” :{},
  	    “IE2” :{“encBlockIdx”: 1},
	    “IE3” :{},
  	    “IE4” :{}
          }
      },  
      “encryptedBlock” : [
          Hdr2,
          IE2
      ],
      “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
      }
   }
   “modificationsBlock” : {
	“Mod_chain”:[]
   }
}



_1582441069.vsd
SEPP


SEPP


1. Registration Request
(Supported security mechanisms)



3. Registration Response
(Selected security mechanism)


2. Select security mechanism



